but we will see in Chapter 6 that when the critical point maps in three iterates to
a fixed point for a one-dimensional map, a continuous natural measure is created,
which turns out to be desirable for this application.

The three attractors for this system are contained in the union of the three
lines. The first, Ay, is the union of two subintervals of the line N, and the second,
Ay, is the union of two slanted intervals that intersect A;. The third, As, is an
“X” at the intersection of the lines N; and Nj.

Figure 4.12 shows the basin of infinity in white, and the basins of A, A;,
and Aj; in dark gray, light gray, and black. The basins of all three attractors have
nonzero area, and are riddled. This means that any disk of nonzero radius in the
shaded region, no matter how small, has points from all 3 basins. Proving this fact
is beyond the scope of this book. Color Plate 2 is a color version of this figure,
which shows more of the detail.

The message of this example is that prediction can be difficult. If we want
to start with an initial condition and predict the asymptotic behavior of the
orbit, there is no limit to the accuracy with which we need to know the initial
condition. This problem is addressed in Challenge 4 in a simpler context: When
a basin boundary is fractal, the behavior of orbits near the boundary is hard to
predict. A riddled basin is the extreme case when essentially the entire basin is
made up of boundary.

4.5 FRACTAL DIMENSION

Our operational definition of fractal was that it has a level of complication that
does not simplify upon magnification. We explore this idea by imagining the
fractal lying on a grid of equal spacing, and checking the number of grid boxes
necessary for covering it. Then we see how this number varies as the grid size is
made smaller.

Consider a grid of step-size 1 /n on the unit interval [0, 1]. That is, there are
grid pointsat 0, 1/n,2/n, ..., {n — 1)/n, 1. How does the number of grid boxes
(one-dimensional boxes, or subintervals) depend on the step-size of the grid? The
answer, of course, is that there are n boxes of grid size 1/n. The situation changes
slightly if we consider the interval [0, 8]. Then we need 8n boxes of size 1/n. The
common property for one-dimensional intervals is that the number of boxes of
size € required to cover an interval is no more than C(1/¢€), where C is a constant
depending on the length of the interval. This proportionality is often expressed by
saying that the number of boxes of size € scales as 1 /€, meaning that the number




f boxes is between C, /e and C; /€, where C; and C; are fixed constants not
fepending on €.

The square {(x,y) : 0 < x,y =< 1} of side-length one in the plane can be
wvered by n? boxes of side-length 1/n. It is the exponent 2 that differentiates this
b o-dimensional example from the previous one. Any two-dimensional rectangle
R can be covered by C(1/€)? boxes of size €. Similarly, a d-dimensional region
equires C(1 /€)% boxes of size €.

The constant C depends on the rectangle. If we consider a square of side-
fength 2 in the plane, and cover by boxes of side-length € = 1/n, then 4(1/€)*
boxes are required, so C = 4. The constant C can be chosen as large as needed,
bs long as the scaling C(1/¢€)? holds as € goes to 0.

We are asking the following question. Given an object in m-dimensional

hpace, how many m-dimensional boxes of side-length € does it take to cover the
object? For example, we cover objects in the plane with € X € squares. For objects
Hin three-dimensional space, we cover with cubes of side €. The number of boxes,
in cases we have looked at, comes out to C(1/ €)Y, where d is the number we
would assign to be the dimension of the object. Our goal is to extend this idea
to more complicated sets, like fractals, and use this “scaling relation” to define
the dimension d of the object in cases where we don’t start out knowing the
answer.

. Notice that an interval of length one, when viewed as a subset of the plane,
tequires 1/€ two-dimensional boxes of size € to be covered. This is the same
scaling that we found for the unit interval considered as a subset of the line, and
matches what we would find for a unit interval inside R™ for any integer m. This
scaling is therefore intrinsic to the unit interval, and independent of the space
in which it lies. We will denote by N(e) the number of boxes of side-length €
needed to cover a given set. In general, if S is a set in R™, we would like to say
that S is a d-dimensional set when it can be covered by

N(e) = C(l/e)d

boxes of side-length €, for small €. Stated in this way, it is not required that the
-exponent d be an integer.

Let S be a bounded set in R™. To measure the dimension of S, we lay a grid
- of m-dimensional boxes of side-length € over S. (See Figure 4.13.) Set N(¢) equal
o the number of boxes of the grid that intersect S. Solving the scaling law for the
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Figure 4.13 Grid of boxes for dimension measurement.
The Hénon attractor of Example 4.10 is shown beneath a grid of boxes with side-
length € = 1/4. Of the 256 boxes shown, 76 contain a piece of the attractor.

dimension d gives us

d= InN(e) —InC
- In(l/e)

If C is constant for all small €, the contribution of the second term in the
numerator of this formula will be negligible for small €. This justifies the following:

Definition 4.14 A bounded set S in R™ has box-counting dimension

. _ .. InN(e)
boxdim(S) = }1_% n(1/e)’

when the limit exists.

We can check that this definition of dimension gives the correct answer for

a line segment in the plane. Let S be a line segment of length L. The number of -
boxes intersected by S will depend on how it is situated in the plane, but roughly
speaking, will be at least L /€ (if it lies along the vertical or the horizontal) and no
more than 2L /e (if it lies diagonally with respect to the grid, and straddles pairs
of neighboring boxés). As we expect, N(€) scales as 1/ for this one-dimensional
set. In fact, N(¢€) is between L times 1/€ and 2L times 1 /€. This remains true for
infinitesimally small €. Then Definition 4.14 gives d = 1.




