Boom, Bust, and Chaos in the Beetle Census

DAMAGE DUE TO flour beetles is a significant cost to the food processing
industry. One of the major goals of entomologists is to gain insight into the
population dynamics of beetles and other insects, as a way of learning about insect
physiology. A commercial application of population studies is the development
of strategies for population control.

A group of researchers recently designed a study of population fluctuation
in the flour beetle Tribolium. The newly hatched larva spends two weeks feeding
before entering a pupa stage of about the same length. The beetle exits the pupa
stage as an adult. The researchers proposed a discrete map that models the three
separate populations. Let the numbers of larvae, pupae, and adults at any given
time t be denoted L;, P,, and A,, respectively. The output of the map is three
numbers: the three populations L, |, P+, and A+ one time unit later. It is most
convenient to take the time unit to be two weeks. A typical model for the three
beetle populations is

Ly = bA,
Py =L{1 - Pai)
Ay =P(1 - !-Lp) + Al — pa), (1.5)

where b is the birth rate of the species (the number of new larvae per adult each
time unit), and where w, gy, and p, are the death rates of the larva, pupa, and
adult, respectively.

We call a discrete map with three variables a three-dimensional map, since
the state of the population at any given time is specified by three numbers L,, P,,
and A,. In Chapter 1, we studied one-dimensional maps, and in Chapter 2 we
move on to higher dimensional maps, of which the beetle population model is an
example.

Tribolium adds an interesting twist to the above model: cannibalism caused
by overpopulation stress. Under conditions of overcrowding, adults will eat pupae
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and unhatched eggs (future larvae); larvae will also eat eggs. Incorporating these
refinements into the model yields

List = bA, expl—ceahh, — cal)
P = L1 — )
A = Pdl - Mp)exP(_CpaAz) + Al — pa). (1.6)

The parameters ¢y = 0.012, ¢, = 0.009, ¢ = 0.004, ; = 0.267, u, = 0, and
b = 7.48 were determined from population experiments. The mortality rate of
the adult was determined from experiment to be w1, = 0.0036.

The effect of calling the exterminator can be modeled by artificially chang-
ing the adult mortality rate. Figure 1.17 shows a bifurcation diagram from Equa-
tions (1.6). The horizontal axis represents the mortality rate u,. The asymptotic
value of L—found by running the model for a long time at a fixed g1, and recording
the resulting larval population—is graphed vertically.

Figure 1.17 suggests that for relatively low mortality rates, the larval pop-
ulation reaches a steady state (a fixed point). For u, > .1 (representing a death
rate of 10% of the adults over each 2 week period), the model shows oscillation
between two widely-different states. This is a “boom-and-bust” cycle, well-known
to population biologists. A low population (bust) leads to uncrowded living con-
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Figure 1.17 Bifurcation diagram for the model equations (1.6).
The bifurcation parameter is u,, the adult mortality rate.
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Figure 1.18 Population as a function of time.
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ditions and runaway growth (boom) at the next generation. At this point the
limits to growth {cannibalism, in this system) take over, leading to a catastrophic
decline and repeat of the cycle.

The period-doubling bifurcation near g, = 0.1 is followed by a period-
halving bifurcation at g, = 0.6. For very high adult mortality rates (near 100%},
we see the complicated, nonperiodic behavior.

The age-stratified population model discussed above is an interesting math-
ematical abstraction. What does it have to do with real beetles? The experimenters
put several hundred beetles and 20 grams of food in each of several half-pint milk
bottles. They recorded the populations for 18 consecutive two-week periods. Five
different adult mortality rates, g, = 0.0036 (the natural rate), 0.04, 0.27, 0.50,
0.73, and 0.96 were enforced in different bottles, by periodically removing the
requisite number of adult beetles to arrificially reach thar rate. Each of the five
experiments was replicared in four separate bottles.

Figure 1.18 shows the population counts taken from the experiment. Popu-
lations of adults from the four separate bottles are graphed together in the boxes
on the left. The four curves in the box are the adult population counts for the
four bottles as a function of time. The boxes on the right are similar but show
the population counts for the larvae. During the first 12 weeks, the populations
were undisturbed, so that the natural adult mortality rate applied; after that, the
artificial mortality rates were imposed by removing or adding adule beetles as
needed.

The population counts from the experiment agree remarkably well with the
computer simulations from Figure 1.18. The top two sets of boxes represent pig =
0.0036 and 0.04, which appear experimentally to be sinks, or stable equilibria, as
predicted by Figure 1.18. The period-two sink predicted also can be seen in the
populations for u, = 0.27 and 0.50. For p, = 0.96, the populations seem to be
governed by aperiodic oscillarions.
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